Deep Flexible Structure Preserving Image Smoothing

Yuanbin Fu*
yuanbinfu@tju.edu.cn
Tianjin University

Mingjia Li*
mingjiali@tju.edu.cn
Tianjin University

Xinhui Li
lixinhui@tju.edu.cn
Tianjin University

Xiaojie Guo®
xj.max.guo@gmail.com
Tianjin University

Input A=0.9 A=0.6

A=04

A=0.1 A=0.01

A=0.2

Figure 1: An example of our flexible structure preserving image smoothing. The proposed pipeline makes it easy to achieve
diverse smoothing results without retraining the network whilst enjoying a small amount of network parameters and satisfac-
tory visual quality. The edge guidance is shown on the corner of each result.

ABSTRACT

Structure preserving image smoothing is fundamental to numer-
ous multimedia, computer vision, and graphics tasks. This paper
develops a deep network in the light of flexibility in controlling,
structure preservation in smoothing, and efficiency. Following the
principle of divide-and-rule, we decouple the original problem into
two specific functionalities, i.e., controllable guidance prediction
and image smoothing conditioned on the predicted guidance. Con-
cretely, for flexibly adjusting the strength of smoothness, we cus-
tomize a two-branch module equipped with a sluice mechanism,
which enables altering the strength during inference in a fixed
range from 0 (fully smoothing) to 1 (non-smoothing). Moreover,
we build a UNet-in-UNet structure with carefully designed loss
terms to seek visually pleasant smoothing results without paired
data involved for training. As a consequence, our method can pro-
duce promising smoothing results with structures well-preserved
at arbitrary levels through a compact model with 0.6M parameters,
making it attractive for practical use. Quantitative and qualitative
experiments are provided to reveal the efficacy of our design, and
demonstrate its superiority over other competitors. The code can
be found at https://github.com/lime-j/DeepFSPIS.

CCS CONCEPTS

« Computing methodologies — Image manipulation.

“Both authors contributed equally to this research.
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MM °22, October 10-14, 2022, Lisboa, Portugal

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9203-7/22/10...$15.00
https://doi.org/10.1145/3503161.3547857

KEYWORDS

Image smoothing, Structure preserving, Deep learning

ACM Reference Format:

Mingjia Li, Yuanbin Fu, Xinhui Li, and Xiaojie Guo. 2022. Deep Flexible
Structure Preserving Image Smoothing. In Proceedings of the 30th ACM
International Conference on Multimedia (MM °22), October 10-14, 2022, Lisboa,
Portugal. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3503161.
3547857

1 INTRODUCTION

Structure preserving image smoothing aims to suppress unwanted
textural details while maintaining desired structures in natural
images, which can ameliorate the performance of subsequent appli-
cations such as image stylization [5, 13], stereo matching [19, 30, 50],
and optical flow [38, 46]. The problem is highly ill-posed, as there
are infinite possible outputs for the same input. Given different
images and tasks, hardly a sound way exists for determining which
outputs are correct or best. Please see Fig. 1 for example. Usually, for
obtaining a particular result among so many possible outputs, one
may need to laboriously tweak the (hyper-) parameters of smooth-
ing algorithms, e.g., a numerical scalar adjusting the smoothing
level/strength. Thus, for practical use, it is of great significance to
develop a flexible scheme that allows users to intuitively customize
their desired smoothing effects from various candidates.

Recently, deep learning techniques have considerably pushed for-
ward the field of image filtering/smoothing, thanks to their strong
capability of feature extraction. Our approach falls into this cate-
gory as well. Objectively, learning to adapt or select the smoothing
extent/level according to particular needs is still challenging for
three main reasons: 1) It is difficult to change the smoothing degree
when the network weights were frozen in the testing phase. How
to adjust the weights or the generated feature maps of trained deep
models for producing different effects in a handy manner is key to
addressing this issue; 2) Aligned/paired ground-truth (reference)
smoothed images with different smoothing strengths, are either


https://github.com/lime-j/DeepFSPIS
https://doi.org/10.1145/3503161.3547857
https://doi.org/10.1145/3503161.3547857
https://doi.org/10.1145/3503161.3547857

MM °22, October 10-14, 2022, Lisboa, Portugal

tough to collect or even nonexistent, which prevents the network
training from a supervised way; and 3) The relationship between
natural images and desired smoothing outputs is complex, espe-
cially for images with diverse patterns and/or abundant color infor-
mation. As a result, directly training a unified network to make the
above happen may require a substantial amount of network param-
eters. Most existing deep learning approaches [6, 9, 14, 24, 31, 48]
fail to resolve the problem of flexibly altering the smoothing effects
in the testing phase. They merely produce results imitating one of
existing optimization-based operators, like L0 [47], RTV [49], or
muGIF [16]. For varying smoothing strengths, the network needs
to be retrained with specifically produced (pseudo) ground truths.
Several works [8, 11] for addressing this issue adopt a common
network with dynamically generated weights to simulate the target
operator with different selected configurations. In other words, dur-
ing training, they are enslaved to producing multi-level smoothed
results for each input image as paired data yet. In addition, the
parameter for adjusting the smoothing strength exactly correspond
to that of the imitated operator, the value of which is not restricted
in a unified/fixed range. Although the work of [10] survives from
manufacturing paired references for training in a supervised man-
ner, it still suffers from the retraining procedure when tuning the
configuration for different smoothing extents.

Contributions. This paper aims to build an efficient and ef-
fective deep learning framework, by jointly taking into account
flexibility of adjusting the smoothing strength, promising visual
quality, and computational efficiency. Our framework contains two
main modules, i.e. adjuster and smoother. The motivation behind
this logical partition is to decompose the original complex problem
into two smaller sub-ones for restricting the solution space and
developing compact models. Concretely, the adjuster responds for
guidance prediction with respect to a strength parameter A € [0, 1],
which connects between A and an intuitive guidance map that will
be later used to indicate the smoothing procedure. The adjuster
is a two-branch network equipped with a sluice mechanism, one
branch of which is for extracting edge-related features while the
other for texture-related features. Please notice that the guidance
map can also be offered by users and be possibly generalized to
other types of indicator. The high-quality smoothing results con-
ditioned on the predicted/provided guidance can be obtained by
our smoother, without (1/guidance map, smoothed result) pairs
required for training. Our contributions can be summarized as:

e We customize a smoothing/filtering framework that allows
users to flexibly adjust the strength in the testing stage, by
simply tuning a parameter A in a fixed continuous range.

e Two decoupled modules are developed for model effective-
ness and efficiency, i.e., an adjuster for guidance prediction
with respect to A, and a smoother for conditional image
smoothing, making our model attractive for practical use.

e We design several losses in cooperation with a UNet-in-
UNet architecture to execute the training, making unpaired
learning with high-quality smoothing results feasible.

Extensive experiments are conducted to demonstrate the efficacy of
the proposed framework, reveal its superiority over other state-of-
the-art alternatives, and show its potential to various applications.

Mingjia Li, Yuanbin Fu, Xinhui Li, and Xiaojie Guo

2 RELATED WORK

The core idea of early image smoothing strategies is to average
pixels within its local neighbourhood, with mean/Gaussian filters
[44] and bilateral filter (BF) [35, 42] as representatives. Although
these methods are simple and fast, due to the content-blindness,
obvious defects often leave in visual results, such as gradient re-
versal artifacts and halos [2, 12]. Another attempt based on the
scale-space theory, called rolling guidance filter (RGF) [51], takes a
Guassian-blurred image as input, and then gradually seeks struc-
tural edges from the previous iteration to indicate the next round.
Its main drawback comes from the inaccurate edge localization.
Generally speaking, the above operators execute image smoothing
by solely utilizing the local information, without consideration of
global features.

To address the local issue, a variety of approaches have been
proposed via treating the image smoothing as a global optimiza-
tion problem. Among these schemes, Iy gradient minimization [47]
employs the £ norm to regularize gradients to be sparse in filtered
results. Further, the works of [3, 25, 27] improve the original &
regularization terms by the #; (or its variants) to clean up possi-
ble isolated spots. Xu et al. [49] designed a relative total variation
(RTV) prior to handle complex textures. Besides the self-guided
mode, several works adopt another signal with a different modality
or shooting condition as reference to guide the optimization proce-
dure. For instance, joint bilateral filter (JBF) [36] and guided image
filter (GIF) [18] rely on the reference to determine either kernel
weights or linear transform bases, which particularly favor the cases
where the guidance image can provide more reliable information
than the filtered image. Ham et al. [17] devised a static/dynamic
filter (SD) to take advantage statically of the reference. However,
these mentioned reference-guided methods lack of the ability to
optimize/update the reference image. To overcome this problem,
Guo et al. [16] proposed a simple yet effective filter, named mu-
tually guided image filter (muGIF), to jointly optimize the two
inputs. More recently, Liu et al. [28] developed a framework to
perform image smoothing on tasks with different or even opposite
requirements, by tuning (hyper-) parameters of a carefully-designed
Hubel truncated loss. Though satisfactory smoothing effects, these
optimization-based methods typically involve multiple iterations to
converge, each of which requires computationally expensive oper-
ators, like the inverse of large matrices, limiting their applicability.

With the emergence of deep learning, as verified in [48] and [24],
it is feasible to build deep networks for simulating traditional oper-
ators in a fully supervised manner. In this way, the inference could
be greatly accelerated, because no online optimization is performed
in the testing phase. We emphasize that, for the target problem,
there is no well-defined best smoothing result for an image, and
thus no so-called ground truth. To relieve the pressure of preparing
(pseudo) ground truths, Fan et al. [10] investigated a strategy to
directly learn from data without any supervision through optimiz-
ing the gradient-based objective function. However, this approach
can only produce a certain filtering effect among multiple possible
candidates, specifically to a given parameter setting. To make the
filtering flexible, the work of [8] tries to dynamically generate the
weights of the network according to different parameters during
inference. It is capable to offer users with options of altering the



Deep Flexible Structure Preserving Image Smoothing

B
|

Ve Ve Ve Ve Ve Ve Ve Ve Vel

MM °22, October 10-14, 2022, Lisboa, Portugal

K3
[ K3 |[K3
s1 K3 | s1
D1 51 K3|== K3 | 51 D1 g: g:
12 |D1|S1/ K381/ pq |2

12|D1]s1(D1] %

/2 | D1} *2

K[ K3

s1| K3 s1
K381 K381/ K38&1| K381 K3&1| K381 K38&1 K381 K381 K381 Volks| sk D1| 51 K3 K3 s1 D1 &
I s1 -L>s1&1 $181|5181|S181| S1&1)[S1&1/5181|S181|S181| S181x C | S1 || S1 || S1 =S ] A[A D1/D1(D1|D1 /2| D1|S1|/K3|/81/pq| =2 D1
D1 D1&1/D1&1/D2&1|D2&1 D4&1D4&1 D8&1/ D8&1 D1&1/D1&1 D1/ D1 D1 2 I3 D1/81|/D1 *2 *
2| D1 *2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ) —_—
K3|K3|K3|K3 — L ks
s1|s1|s1|s1m| STIK3 IR Loy K3 STl s
Conv-LN-PReLU — Input/ Output Flow C) Concatenate b1lp1lo1lpi " Rl S| K3 K3|s1| D1
; : Smoother | |2 ler s eS|
[ Conv-PReLU — = Sluice In. / Out. Flow X Multiply 2 ?21 g: 1321 2
Conv-Att-PReLU 7"\ Skip-connection S) Sigmoid S(I’ ]L[)\) —

Figure 2: Illustration of our proposed framework. The letters K, S, and D indicate kernel size, stride and dilation rate of a
convolution layer, respectively. Block with /2 denotes MaxPool2d(2) operation, while *2 represents upsampling operation via
bi-linear interpolation. Att refers to the pixel-wise plus channel-wise attention layer [37].

smoothing strength for diverse parameter configurations, with-
out the need of retraining the network. Unfortunately, the paired
filtered/smoothed images are still indispensable during training.
Besides, by replacing the gradient prior with a semantic prior, Kim
et al. [21] inserted a deep solver into the optimization algorithm of
traditional operators, which contains the high-level information
for discriminating structures and high-frequency textures. Even
though allowing users to vary the smoothing degree by adjusting
the parameters, it is essentially a global optimization-based method
which is time-consuming due to multiple iterations required at
the testing stage. Please notice that all the above mentioned deep-
learning models demand either retraining the network for adjusting
the filtering extent, or processing the natural images by existing
operators for obtaining paired filtered images as (pseudo) ground
truth, which is inconvenient to use in practice.

3 METHODOLOGY

This paper investigates a framework that decouples the structure
preserving image smoothing problem into two logical components,
i.e., an adjuster for predicting guidance according to different de-
mands, and a smoother for carrying out the smoothing in strict
accordance with the predicted guidance, as depicted in Fig. 2. By
this divide-and-conquer means, the two components can focus on
their own jobs, which can thus be trained independently. Let I and
O, denote the input and the smoothed result corresponding to the
strength parameter A, respectively. The adjuster A(I, A) produces
the guidance map M) controlled by A, while the smoother S(I, M)
outputs O, conditioned on M. The strength of smoothness A is
unified in the range from 0 (fully smoothing) to 1 (non-smoothing),
making it easy to adjust. Since we the two modules have different
functionalities, we made task-specific design for each of them. In
what follows, we explain the two components in detail.

3.1 Adjuster

3.1.1  Two-branch Architecture. The blueprint of our adjuster with
a sluice mechanism is shown in the left part of Fig. 2. Given an
input image I, we first pass it through a convolutional (conv) layer

(C) Oo.2

(b) My.2 0 VI
%

AN &
d P! J YT m“
(g \,,‘v,

(e) Visualization of F;.

Figure 3: (c) is the smoothed result of (a) conditioned on the
predicted guidance (b) wrt A = 0.2. F, concentrates more on
edges (d), while F; prefers texture-related information (e).

to extract features F shared between the following two branches.
Then, another 20 conv layers (deep branch) are equipped to learn
edge-related information F,, while only 2 extra conv layers (shal-
low branch) are employed to produce texture-related ones F;. This
is because that the edges or object-level boundaries are of higher
semantic than the textural details or gradients, and thus spending
more resources. Finally, F, and A - F; are concatenated and fed into
three decoding blocks to form the guidance M. The parameter
A here can be regarded as a sluice for controlling the amount of
textures conveyed by the shallow branch. When 2 is close to 1,
F; makes a relatively evident impact on the final prediction. As
A decreases toward 0, F, gradually stands out and F; is equiva-
lently suppressed. As a result, the larger (smaller) the A, the denser
(sparser) the M. Figure 3 exhibits the visual comparison between
F, and F;, corroborating the rationality of our two-branch design.



MM °22, October 10-14, 2022, Lisboa, Portugal

3.1.2  Two-stage Training Scheme. For the purpose of enforcing
smoothing results to be perceptually meaningful, our adjuster de-
sires multi-level edge-like information as guidance to the smoother.
It is intuitive to draw support from the edge detection community.
However, a huge gap exists between edge detection benchmarks
(e.g., NYUD [34] and BSDS500 [32] datasets) and our task, which
impedes the intuitive plan. In other words, our mission involves
not only a single level prediction corresponding to the ground-
truth/annotated edge map' but a series of guidance maps related
to different A’s in [0, 1].

To shrink the gap and make the problem tractable, we alterna-
tively introduce a two-stage training strategy. At the first stage,
the shallow branch for modeling textural information is disabled.
The adjuster is trained in a recurrent fashion with a pre-defined
number (R = 4 in this work) of iterations corresponding to different
discrete levels. Specifically, in the first round, the features F from
the beginning layer is fed into the deep branch for obtaining the

edge-related features Fél) and the guidance map MV, respectively.
Afterwards, Fél) is then taken as the input to the same branch to

acquire Féz) and M® _ This process performs so on and so forth
until the maximal number R of iterations is reached. The predicted
guidance maps M) (r € {1,2,...,R}) are trained on the BSDS500
dataset, and constrained by the guidance consistency loss detailed
later in Sec. 3.1.4. This procedure enables our primitive adjuster to
conduct multiple anchor guidance maps stemmed from the edges.
Here we define the function of calculating the strength parameter
A, given a guidance map M, as follows:

_ [IMobin(VI)|l;

A= VAMT) with AM,T) = BRI TR

where o designates the Hadamard product, V means the first order
derivative filter, bin(+) is defined as binarization with a threshold of
0.005, and || - ||; stands for the #; norm. Via such a simple function,
the guidance map can be always connected to the numerical 1 €
[0, 1]. Please notice that, for different images, the values of 1 with
respect to the R guidance maps generated from the first stage may
change. The second stage is to learn a continuous mapping from A to
guidance map. The images in the BSDS500 are quite limited [29, 45],
providing insufficient A-guidance pairs to support a reasonable
transition. Therefore, we additionally employ 10k images from the
COCO dataset [23] without any annotated edge information. With
the guidance maps predicted by the first-stage model, the volume
of A-guidance pairs is expanded on the additional images. In the
sequel, all of the A-guidance pairs produced from the BSDS500 and
augmented from the COCO are used to better learn the transition.

3.1.3 Heuristic Component Drop. In nature, structure preserving
image smoothing can be regarded as merging neighbor pixels hav-
ing similar colors/intensities within different regions/objects into
different components. The transition could be soft when the smooth-
ing strengths are relatively low, where only textures and/or small
regions/objects are involved to clean out. But, as the smoothing
strength increases beyond a threshold 7, the merging happens be-
tween objects or large regions. Under the circumstances, each com-
ponent ought to be considered as a whole, i.e., a binary option to
avoid the structure leakage/destruction issue. To this end, we adopt

IFor the task of edge detection, the answer should be unique and well-defined.

Mingjia Li, Yuanbin Fu, Xinhui Li, and Xiaojie Guo

Figure 4: An example of our component drop.

a heuristic algorithm, called component drop. With a slight modifi-
cation from [1], the elements in the (binarized) M; are organized
into multiple sets of 8-connected components. In our experiments,
7 is empirically set to 0.2 for all images, which works sufficiently
well. Then, we select and drop the smallest components from M;
by binary search until the remaining map is the closest one to the
appointed A. Please notice that the heuristic component drop is
activated only when A < 7. Figure 4 shows the effectiveness of the
proposed component drop.

3.1.4  Loss Function. The objective of training the adjuster consists
of guidance consistency, interpolation, and label regression losses.
Guidance consistency loss is to enforce the predicted guidance to
be consistent with a target signal. For the first stage training, the
target signal at the beginning adopts VIM = (1 - a) VI + MCT
with ag := 0.1 and MST the ground-truth edge map, which is then
updated as follows:

Vre {2, Ry VIU) := (1= an)VIU™D 4 0, vIT=D o MOT | (2)

where o, increases along with the iteration step r by a, « 1.5 -
ar-1. The above updating rule gradually suppresses textures and
converges towards MST . The loss for the first stage training is:

R — —
L£88 =31 M o VIO |y + BIMP) o VI, (3)

r=1

where VI(r) =1 - Vi), M) =1 M) and f is a parameter
balancing the two terms. For the second stage, by treating the M(")
as reference, the guidance consistency loss turns out to be:
R+1 _
Leon = ) IMyr o MOy + BlIMGr o M7 |y, (8)
r=0

where M(')s, r € {1,2,.., R}, are generated by the model trained
at the first stage and M- denotes the guidance map predicted at
the second stage with A" := \/A(M(’),I). In particular, AR+ =
T, MR+ M(R), A% :=1,and MO = bin(VI). Moreover, f is set
to 12 and 1 for the first and second stages, respectively.
Interpolation loss is capable to constrain the degree of output M)~
to be close to the corresponding A" simply by:

R+1 2
Lingp = )| (A’ - x/A<Mp,I>) : 5)
r=0

Label regression loss consists of a cross entropy (CE) term and a dice
term, as adopted by [7]. By denoting M) (i) as the i-th element of



Deep Flexible Structure Preserving Image Smoothing

(b) w/ Oﬂ (©) Oﬁ

Figure 5: Visual comparison between without and with regu-
larization on side-outputs by the loss.

M), the class-balanced CE term and dice term are as follows:

R+1
LCE = —Z ( Z log(MAr(l)) - Z log(l - er(l)))) (6)

r=0 ‘ieM, ieM_

, ™

R+1
Laice = Z |Myr o Myr [l + IMT) o M) ||
4 2+ |Myr o MOy

where M, and M_ represent the edge pixel and non-edge pixel sets,
respectively. Consequently, the label regression loss is given by:

Lreg = LcE + Vdice Ldice> 3)

where ygjce (0.002 in our experiments) refers to a balance between
the CE and dice terms.

As for the first stage training, only the guidance consistency
loss L5 is used. While for the second training stage, all of the
interpolation, label regression and guidance consistency losses are
involved, yielding:

Leont = Leon + Yintp Lintp + YregLreg. )

where yintp, and yreg are the corresponding coefficients. In our
experiments, we respectively set yintp, and yreg to 0.25 and 10.

3.2 Smoother

3.2.1  UNet-in-UNet Architecture. 1t is critical to have a large recep-
tive field for acquiring better contextual information. Otherwise,
the visual quality would be considerably poor when handling cases
with large objects to be smoothed out. A straightforward way for
enlarging receptive fields is to deepen the network, the drawback of
which is that the redundant network parameters will be involved,
and the gradient vanishing or explosion may occur. To effectively
achieve the goal with the parameter space remarkably reduced, we
alternatively employ a UNet-in-UNet architecture as shown in the
right part of Fig.2. We advocate that each skip-connection in the
vanilla UNet [39] can be also replaced with a (4-layer) U-shaped
module, namely inner UNet, to further enlarge the receptive field. In
detail, we progressively downsample the feature maps of previous
layers on the encoding side to process features with smaller sizes,
then upsample and fuse them with the feature maps produced by
the inner UNet on the decoding side. The final outputs O, together
with the side-outputs from those inner UNets are all regularized by
the loss formulated in Eq. (13), which helps preserving the colors of
input images (see Fig. 5). Besides, to stabilize the training, we adopt
pixel-wise plus channel-wise attention [20, 37]. Figure 6 gives a
comparison to show the rationale of our UNet-in-UNet structure
in terms of suppressing large objects in comparison with a UNet
without inner UNet in its skip-connection (Fig. 6(c)) and a Residual-
in-UNet variant by substituting the inner UNet with residual blocks
(see Fig. 6(b)).

MM °22, October 10-14, 2022, Lisboa, Portugal

Figure 6: Visual comparison between different UNet-in-UNet
configurations.

3.2.2  Loss Function. When training the smoother, we randomly
sample x € [0, 1] from a uniform distribution, then set A = x L0-2j]+1
at the j-th epoch, to generate guidance map M, by the trained
adjuster. The objective contains the truncated reconstruction loss,
texture suppressing loss, and gradient preserving loss.

Truncated reconstruction loss preserves the structural similarity
between the smoothed result O and the original I, the penalty of
which is in the following truncated manner:

Lrec = %Zj]min[(ow') — ()2 A+7], (10)

where N represents the total amount of pixels in the image. The
threshold parameter 7 controls the position of truncation. In our
experiments, empirically setting 7 to 0.5 works well. The truncation
operation enables removing large components, which is vital es-
pecially when smoothing a large area that consists of components
with dramatic differences in color.

Texture suppressing loss is proposed to constrain the desired smooth-
ing result O, in the gradient domain, which can be expressed as:

vo, |P
=2 11
Lo ‘MNVMZ (1)
where || - ||2 is the & norm, and € is a small constant (0.005 in

this work) to avoid zero denominator. If the gradients located on
predicted edges (i.e., large | M) (i) - VI(i)| values), the penalties are
small; otherwise the penalties get large.

Gradient preserving loss further regularizes the structure of smooth-
ing result to be similar with the edge guidance via:

Lpsrv = ||Mp o VI - VOA”% (12)

The total loss of our smoother network S(I, M)) combines these
three terms with two coefficients ysup and ypsrv, written as follows:

L= Lrec+ Ysup-Esup + Ypsrvasrv- (13)

In our experiments, ysup and ypsrv are set to 4 and 0.1, respectively.

4 EXPERIMENTAL VALIDATION

4.1 Implementation Details

Our model is implemented in PyTorch. All of our experiments are
carried out with an NVIDIA RTX 2080Ti GPU and an Intel Core
i7-8700 3.20 GHz CPU. The Adam optimizer [22] is used for training
the network, whose learning rate is set to le-4 at the beginning and
linearly decays to le-6. Our model is insensitive to all the hyper-
parameters, e.g., when slightly adjusting the hyper-parameters,
there is no obvious impact on the final visual effects. The adjuster
and the smoother are trained independently. As previously noted,
the data utilized for the first training stage of adjuster is from
BSDS500 [32], while for the second stage of adjuster and the training
of smoother, 10k images from the COCO [23] dataset are used.



MM °22, October 10-14, 2022, Lisboa, Portugal

L0 [47] (Rat: 0.0658)

L0 [47] (Rat: 0.0975)

muGIF [16] (Rat: 0.1026) FIP [6] (Rat: 0.1020)

=-
- -

RTV [49] (Rat: 0.0928)

Mingjia Li, Yuanbin Fu, Xinhui Li, and Xiaojie Guo

RGF [51] (Rat: 0.0702) RTV [49] (Rat: 0.0654)

Decoupled [8] (Rat: 0.0709) Ours (Rat: 0.0657)

RGF [51] (Rat: 0.1068)

Decoupled [8] (Rat: 0.1051) Ours (Rat: 0.0981)

Figure 7: Visual comparison with state-of-the-art methods on image smoothing. The number in bracket behind each method
indicates the ratio between the preserved gradient amount of the smoothed result to that of the original input image.

4.2 Performance Evaluation

4.2.1 Qualitative comparison. This part exhibits several visual com-
parisons between our method and other SOTA works. For the tra-
ditional methods, we select the L0 [47], RTV [49], RGF [51], and
muGIF [16]. As for deep learning approaches, FIP [6] and decou-
ple learning [8] are involved. We carefully tweak the (hyper-) pa-
rameters for each competitor to reach a similar smoothing level
measured by the gradient ratio, denoted as Rat, for fair comparison.
The references (pseudo ground truths) of FIP [6] and Decouple
learning [8] are generated by the RTV method [49]. As shown in
Fig. 7, the visual quality of the results by L0 and RGF is rather poor
at this level of smoothing in structure preservation and texture
removal. Though muGIF and RTV perform better, they still suffer
from the structure leakage and the inability of smoothing out large
objects/components. Moreover, the decoupled learning and FIP in-
herit the drawback of RTV, due to their imitation nature. Thanks to
the semantic guidance learned from annotated edge labels and the

strict adherence to the guidance, our method is capable to produce
more visually-pleasing and semantically-meaningful results.

In addition, our method is flexible to embrace various types
of user-defined edge maps, thanks to the principle of divide-and-
rule. As a result, one can somehow edit the guidance map to fulfill
his/her personalized demand. Given an input as shown in Fig. 8
(a), the guidance map in Fig. 8 (b) is synthesized by three kinds of
edge respectively from Canny (left) [4], our adjuster (middle), and
PiDiNet [41] (right). In (d), we manually remove the parterre on the
ground from the guidance map produced by our adjuster. As can be
seen, the results (c) and (e) firmly adhere to the guidance maps (b)
and (d), respectively, which verify the flexibility in handling various
guidance maps, and the strong smoothing consistency with the
provided guidance, of our smoother. Moreover, a visual comparison
between the ground-truth edge map of a sample from the BSDS500
dataset and the guidance map My 2 extracted by our adjuster is
shown in Fig. 9 to further confirm the efficacy of our adjuster.



Deep Flexible Structure Preserving Image Smoothing

(a) Input

(b) Syn. guidance map 1

(c) Result 1

MM °22, October 10-14, 2022, Lisboa, Portugal

(d) Syn. guidance map 2 (e) Result 2

Figure 8: An illustration to the flexibility of our model.

Table 1: Runtime comparison on processing one 480p image
in seconds. GPU costs are marked with .

Method Lo RGF SD RTV L1 realLS
Time | 13426 04246 1.0664 1.8052 945964 0.2969

Method | muGIF enBF DEAF FIP Decouple Ours
Time | 1.9451 0.1710 032617 0.0337 0.0387 0.057

—(b) L?bel,

Figure 9: A comparison between the manually-annotated
label and our predicted guidance map.

4.2.2  Running-time comparison. The time costs of different meth-
ods during inference are shown in Tab. 1. Traditional methods
including L0 [47], RTV [49], RGF [51], SD [17], L1 [3], muGIF [16],
realLS [27], and enBF [26], as well as deep learning approaches
including DEAF [48], FIP [6], and Decouple Learning [8] are in-
volved in the comparison. The implementations of competitors are
all provided by their authors. The running time is measured by
averaging over 100 images from the BSDS500 validation set (resized
to 480p). As reported in Tab. 1, our method is more efficient than
those traditional operators, but slightly fall behind FIP and Decou-
ple by about 0.02s. By further taking the smoothing quality and the
flexibility into consideration, our model seems to be a better choice
than the others for practical use.

4.2.3 Ablation Study. To reveal the effectiveness of our asymmetric
two-branch design in the adjuster, a symmetric design, say the two
branches having the same depth are adopted for comparison. It can
be seen from Fig. 10, our asymmetric design (a deeper branch and a
shallower one), can extract structural edges more precisely with less
parameters. As for our two-stage training of adjuster, Fig. 11 shows
the difference between with and without the two-stage training
scheme. We can observe from (e) and (f) that the adjuster extracts
inaccurate guidance without the pairs generated at the first stage,
which leads to noticeable artifacts in the final results, as shown in
(b). Moreover, to verify the validity of our UNet-in-UNet design,
we replace the inner UNet between the encoder and decoder with
8 residual-blocks (Fig. 6(b)) and skip-connection (Fig. 6(c)), then
retrain the model with the same guidance produced by the adjuster.
Our proposed architecture can suppress undesired textures and
maintain primary structures better than the other options (failing
to clearly remove large objects as indicated by the red arrows, and
suffering from the unpleasant color shift issue).

(e) My.4 w/o 2-stage
G4

Figure 11: Ablation study on two-stage adjuster training,.

4.3 Applications

4.3.1 Guided Depth Upsampling. Following previous literature
[16, 28], we first pollute the depth images from Middlebury bench-
marks with noise, then downsample them at four scales {2, 4, 8, 16}
to simulate the degradation of depth images. The recovery process
(upsampling and denoising) can be achieved by taking a regis-
tered high-resolution RGB image as reference. The competitors are
reference-guided filters, including MSJF [40], GIF [18], muGIF [16],
and SD [17]. The filtering is directly guided by the registered RGB
images. While for our method, the edges extracted from the RGB im-
ages by the adjuster are taken as guidance. Notice that existing deep
learning methods do not have the flexibility to utilize the guidance
image, and thus are excluded from the comparison. Table 2 reports



MM °22, October 10-14, 2022, Lisboa, Portugal Mingjia Li, Yuanbin Fu, Xinhui Li, and Xiaojie Guo

Table 2: Quantitative comparison on the noisy simulated ToF data in terms of MAE. The best results are highlighted in bold,
while the second-best results are underlined.

Art Book Dolls Laundry Moebius Reindeer
2% 4X 8% 16X 2% 4X 8% 16X 2% 4X 8% 16X 2% 4x 8% 16X 2X 4X 8% 16X 2% 4x 8x 16X
MSJF 215 264 300 455 | 1.14 275 295 313 | 143 174 271 439 | 256 328 336 4.09 | 119 225 314 377 | 1.11 235 257 473
GIF 139 185 3.01 483|081 1.13 190 229 | 109 189 266 343 | 120 1.82 281 415 | 1.30 2.07 3.06 412 | 1.19 1.84 272 3.50
muGIF | 0.94 145 1.89 3.35| 085 0.92 129 243 | 0.60 0.78 126 259 | 0.61 083 161 250 [0.73 1.05 119 215 |0.67 088 179 275
SD 0.89 149 277 438 | 0.77 095 144 267 | 0.79 085 141 245|065 081 171 376 | 085 1.19 172 283 | 081 1.13 1.67 3.75
Ours 088 121 189 3.16 | 0.73 094 135 2.10| 064 080 1.22 233|064 0.76 139 240 | 076 098 116 2.14| 0.73 0.87 149 2.46

Method

¢

¢

mm..ﬁ...

(a) Noisy input  (b) Ground truth (c) MSJF [40] (d) GIF [18] (e) muGIF [16] (f) SD [17] (g) Ours
Figure 12: Visual comparison on the 8x Art and Moebius cases. Best viewed in color.

Table 3: Quantitative comparison on the Low-light enhance-
ment task in terms of NIQE|.

Datasets RTV RGF muGIF FIP Decouple Ours

LIME 3.8586 3.8779 3.7881 3.9079 3.8170  3.5936
\A% 5.2232 53961 5.1941 54858 5.1434 5.1384

4.3.3 Image Abstraction. Image abstraction is to simplify a complex
image to a easy-to-understand one, by suppressing insignificant
details while highlighting salient structures. For example, Win-
nemoller et al. [43] proposed to adopt iterative Gaussian filtering
to eliminate unnecessary details, and enhance the primary edges
extracted by difference-of-Gaussian (DOG). Different from previous
approaches, we replace the Bilateral Filters (BF) with our method,
and also use our adjuster instead of DOG to extract and highlight
primary edges. The second row in Fig. 13 shows two image abstrac-
tion results with respect to A = 0.2 and 4 = 0.7.

Figure 13: Visual results of low-light enhancement (upper
row), and multi-level image abstraction (lower row).

the quantitative results. It can be seen that our method achieves
the best/second-best performance in all the cases, thanks to the
semantically-meaningful edge guidance from the adjuster. Figure 12 5 CONCLUSION

displays the visual results, as can be seen from which, our method In this paper, we have proposed a flexible structure-preserving im-
can produce better visual effects against the other competitors in age smoothing/filtering framework. To shrink the solution space,
preserving sharp depth edges and noise suppression. we decomposed the original task into two sub-problems, i.e., guid-

ance generation (adjuster) and conditional smoothing (smoother).
Our framework jointly takes the flexibility, visual quality, and ef-
ficiency into account, making it attractive for practical use. The
advantages of our method against other competitors have been
verified by various experiments. We foresee that a wide range of
multimedia applications can benefit from our proposed framework.

4.3.2  Low-light Enhancement. Our model can also be applied to
low-light enhancement. We follow [15] to extract initial illumation
map then refine it by structure-preserving smoothing. The perfor-
mance is testified on the LIME [15] and VV datasets in terms of
NIQE[33]. Compared to RTV [49], RGF [51], muGIF [16], FIP [6]
and Decouple [8], our method can produce reasonable illumination
maps, and better enhanced results in NIQE, as shown in Fig. 13 and
Tab. 3. Please notice that we do not involve any task-specific modi- ACKNOWLEDGEMENTS

fication. More sophisticated designs can be introduced for better This work was supported by National Natural Science Foundation
performance. of China under Grant 62072327.



Deep Flexible Structure Preserving Image Smoothing

REFERENCES

(1]

[2

(3]

[

[10]

(11

[12]

(13

[14]

[15

[16]

[17

=
&

[19]

[20

[21]

[22]

[23

[24]

oo
A}

[26

[27

[28]

[29

[30]

(31

Stefano Allegretti, Federico Bolelli, and Costantino Grana. 2019. Optimized
Block-Based Algorithms to Label Connected Components on GPUs. TPDS 31, 2
(2019), 423-438.

Soonmin Bae, Sylvain Paris, and Frédo Durand. 2006. Two-scale tone management
for photographic look. TOG 25 (07 2006), 637-645.

Sai Bi, Xiaoguang Han, and Yizhou Yu. 2015. An L1 image transform for edge-
preserving smoothing and scene-level intrinsic decomposition. TOG 34, 4 (2015),
78.

John Canny. 1986. A computational approach to edge detection. TPAMI 8, 6
(1986), 679-698.

Chen Cao, Shifeng Chen, Wei Zhang, and Xiaoou Tang. 2011. Automatic motion-
guided video stylization and personalization. In ACM MM. 1041-1044.

Qifeng Chen, Jia Xu, and Vladlen Koltun. 2017. Fast image processing with
fully-convolutional networks. In ICCV. 2516-2525.

Ruoxi Deng, Chunhua Shen, Shengjun Liu, Huibing Wang, and Xinru Liu. 2018.
Learning to Predict Crisp Boundaries. In ECCV, Vol. 11210. 570-586.

Qingnan Fan, Dongdong Chen, Lu Yuan, Gang Hua, Nenghai Yu, and Baoquan
Chen. 2019. A general decoupled learning framework for parameterized image
operators. TPAMI 43, 1 (2019), 33-47.

Qingnan Fan, Jiaolong Yang, Gang Hua, Baoquan Chen, and David P. Wipf. 2017.
A Generic Deep Architecture for Single Image Reflection Removal and Image
Smoothing. In ICCV. 3258-3267.

Qingnan Fan, Jiaolong Yang, David Wipf, Baoquan Chen, and Xin Tong. 2018.
Image smoothing via unsupervised learning. TOG 37, 6 (2018), 1-14.

Xiao-Nan Fang, Miao Wang, Ariel Shamir, and Shi-Min Hu. 2019. Learning
explicit smoothing kernels for joint image filtering. Computer Graphics Forum
38, 7 (2019), 181-190.

Zeev Farbman, Raanan Fattal, Dani Lischinski, and Richard Szeliski. 2008. Edge-
preserving decompositions for multi-scale tone and detail manipulation. TOG
27, 3 (2008), 1-10.

Eduardo S. L. Gastal and Manuel M. Oliveira. 2011. Domain transform for edge-
aware image and video processing. TOG 30, 4 (2011), 69.

Michaél Gharbi, Gaurav Chaurasia, Sylvain Paris, and Frédo Durand. 2016. Deep
joint demosaicking and denoising. TOG 35, 6 (2016), 1-12.

Xiaojie Guo, Yu Li, and Haibin Ling. 2017. LIME: Low-Light Image Enhancement
via [llumination Map Estimation. TIP 26, 2 (2017), 982-993.

Xiaojie Guo, Yu Li, Jiayi Ma, and Haibin Ling. 2020. Mutually guided image
filtering. TPAMI 42, 3 (2020), 694-707.

Bumsub Ham, Minsu Cho, and Jean Ponce. 2017. Robust guided image filtering
using nonconvex potentials. TPAMI 40, 1 (2017), 192-207.

Kaiming He, Jian Sun, and Xiaoou Tang. 2013. Guided image filtering. TPAMI 35,
6 (2013), 1397-1409.

Asmaa Hosni, Christoph Rhemann, Michael Bleyer, Carsten Rother, and Margrit
Gelautz. 2013. Fast cost-volume filtering for visual correspondence and veyond.
TPAMI 35, 2 (2013), 504-511.

Qiming Hu and Xiaojie Guo. 2021. Trash or Treasure? An Interactive Dual-Stream
Strategy for Single Image Reflection Separation. In NeurIPS. 24683-24694.
Youngjung Kim, Bumsub Ham, Minh N Do, and Kwanghoon Sohn. 2018. Structure-
texture image decomposition using deep vriational priors. TIP 28, 6 (2018),
2692-2704.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common
Objects in Context. In ECCV, Vol. 8693. 740-755.

Sifei Liu, Jinshan Pan, and Ming-Hsuan Yang. 2016. Learning recursive filters for
low-level vision via a hybrid neural network. In ECCV, Vol. 9908. 560-576.

Wei Liu, Xiaogang Chen, Chuanhua Shen, Zhi Liu, and Jie Yang. 2017. Semi-global
weighted least squares in image filtering. In ICCV. 5862-5870.

Wei Liu, Pingping Zhang, Xiaogang Chen, Chunhua Shen, Xiaolin Huang, and Jie
Yang. 2020. Embedding bilateral filter in least squares for efficient edge-preserving
image smoothing. TCSVT 30, 1 (2020), 23-35.

Wei Liu, Pingping Zhang, Xiaolin Huang, Jie Yang, Chunhua Shen, and Ian Reid.
2020. Real-time image smoothing via iterative least squares. TOG 39, 3 (2020),
28.

Wei Liu, Pingping Zhang, Yinjie Lei, Xiaolin Huang, Jie Yang, and Ian D. Reid.
2020. A generalized framework for edge-preserving and structure-preserving
image smoothing. In AAAIL 11620-11628.

Yun Liu, Ming-Ming Cheng, Xiaowei Hu, Kai Wang, and Xiang Bai. 2017. Richer
convolutional features for edge detection. In CVPR. 5872-5881.

Jian-Guang Lou, Hua Cai, and Jiang Li. 2005. A real-time interactive multi-view
video system. In ACM MM. 161-170.

Kaiyue Lu, Shaodi You, and Nick Barnes. 2017. Deep texture and structure aware
filtering network for image smoothing. In ECCV. 229-245.

(32]

[33

(34

(35]

[36

@
=)

S
)

MM °22, October 10-14, 2022, Lisboa, Portugal

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. 2001. A database
of human segmented natural images and its application to evaluating segmenta-
tion algorithms and measuring ecological statistics. In ICCV. 416-425.

Anish Mittal, Rajiv Soundararajan, and Alan C. Bovik. 2013. Making a "completely
blind" image quality analyzer. IEEE Signal Processing Lett. 20, 3 (2013), 209-212.
Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. 2012. Indoor
Segmentation and Support Inference from RGBD Images. In ECCV. 746-760.
Pietro Perona and Jitendra Malik. 1990. Scale-space and edge detection using
anisotropic diffusion. TPAMI 12, 7 (1990), 629-639.

Georg Petschnigg, Richard Szeliski, Maneesh Agrawala, Michael Cohen, Hugues
Hoppe, and Kentaro Toyama. 2004. Digital photography with flash and no-flash
image pairs. TOG 23, 3 (2004), 664-672.

Xu Qin, Zhilin Wang, Yuanchao Bai, Xiaodong Xie, and Huizhu Jia. 2020. FFA-
Net: Feature Fusion Attention Network for Single Image Dehazing. In AAAL
11908-11915.

Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia Schmid.
2015. Epicflow: edge-preserving interpolation of correspondences for optical
flow. In CVPR. 1164-1172.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In MICCAI Vol. 9351. 234-241.
Xiaoyong Shen, Chao Zhou, Li Xu, and Jiaya Jia. 2015. Mutual-structure for joint
filtering. In ICCV. 3406-3414.

Zhuo Su, Wenzhe Liu, Zitong Yu, Dewen Hu, Qing Liao, Qi Tian, Matti Pietikainen,
and Li Liu. 2021. Pixel Difference Networks for Efficient Edge Detection. In CVPR.
5117-5127.

Carlo Tomasi and Roberto Manduchi. 2002. Bilateral filtering for gray and color
images. In ICCV. 839-846.

Holger Winneméller, Sven C. Olsen, and Bruce Gooch. 2006. Real-time video
abstraction. TOG 25, 3 (2006), 1221-1226.

Andrew P. Witkin. 1983. Scale-space filtering. In IJCAL 1019-1022.

Saining Xie and Zhuowen Tu. 2015. Holistically-nested edge detection. In CVPR.
1395-1403.

Li Xu, Jiaya Jia, and Yasuyuki Matsushita. 2012. Motion detail preserving optical
flow estimation. TPAMI 34, 9 (2012), 1744-1757.

Li Xu, Cewu Lu, Yi Xu, and Jiaya Jia. 2011. Image smoothing via L0 gradient
minimization. TOG 30, 6 (2011), 1-12.

Li Xu, Jimmy SJ Ren, Qiong Yan, Renjie Liao, and Jiaya Jia. 2015. Deep edge-aware
filters. In ICML. 1669-1678.

Li Xu, Qiong Yan, Yang Xia, and Jiaya Jia. 2012. Structure extraction from texture
via relative total variation. TOG 31, 6 (2012), 139.

Kuk-Jin Yoon and In So Kweon. 2006. Adaptive support-weight approach for
correspondence search. TPAMI 28, 4 (2006), 650-656.

Qi Zhang, Xiaoyong Shen, Li Xu, and Jiaya Jia. 2014. Rolling guidance filter. In
ECCV. 815-830.



	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Adjuster
	3.2 Smoother

	4 Experimental Validation
	4.1 Implementation Details
	4.2 Performance Evaluation
	4.3 Applications

	5 Conclusion
	References

